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Determination of water in ferrous lactate by near infrared
reflectance spectroscopy with a fibre-optic probe
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Abstract

Near infrared diffuse reflectance spectroscopy with a fibre-optic probe was used to determine the water content in
ferrous lactate dihydrate. Spectra were recorded by immersing the probe in a beaker containing the ferrous lactate
sample. Spectral data were processed by using two different multivariate calibration procedures, viz. stepwise multiple
linear regression (SMLR) and partial least-squares regression (PLSR). The results provided by the two calibration
procedures were similar and departed by less than 1.5% from the values obtained by Karl Fischer titration. © 1997
Elsevier Science B.V.
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1. Introduction

The presence of crystallization or hydration
water in solids markedly alters some properties of
special interest to the pharmaceutical industry
such as the rate of chemical degradation, crystal
dimensions, solubility, compaction power, etc.
Hence, not surprisingly, the determination of the
water content in both raw materials and end
products is one of the most commonplace analy-
ses and as such calls for expeditious, reliable
analytical methods.

The Pharmacopeia [1] recommends ther-
mogravimetry and the Karl Fischer method for
determining the water content. The former is a
very accurate but also very sluggish technique
that can easily take several hours to complete.
Titration with the Karl Fischer reagent is much
faster, so it is the more usual procedure. However,
it is subject to some interferences [2], so it cannot
be applied to any type of sample. Also, like any
volumetric method, it calls for highly precise
weighing, so it is scarcely appropriate for plant
control measurements.

The determination of water in pharmaceutical
preparations was one of the earliest applications
of near infrared spectroscopy (NIRS) [3]. The
shortcomings of the initial procedure, which en-
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tailed dissolving the sample in a solvent, and
those of the instruments available at the time,
designed to work mainly in transmittance mode,
significantly restricted their use. The subsequent
development of near infrared diffuse reflectance
spectroscopy (NIRRS) [4], directly applicable to
solid samples with no pretreatment, enhanced the
analytical interest in this technique, especially on
account of its expeditiousness and applicability to
any type of sample, which allows its ready adap-
tation to control analyses [5,6].

A NIRRS signal is a complex function that
depends on both physical (grain size, crystal struc-
ture) and chemical properties of the sample. At
any wavelength, there is a linear relation similar
to that of the Lambert–Beer law between the
reflectance of a sample and its concentration:

log
R %
R

=
aC
s

(1)

where R % denotes the reflectance of a non-ab-
sorbing standard, R that of the sample, a the
absorptivity, C the concentration and s the scat-
tering coefficient. The logarithm of R % is constant
and can be neglected, so, for a single component,
Eq. (1) can be rewritten as

C=K+
s
a

log
1
R

(2)

By analogy with the Lambert–Beer law, log(1/R)
is known as the ‘apparent absorbance’.

One of the features of NIRRS is its ability to
make measurements by using a fibre-optic module
in order to considerably increase the throughput.
The chief shortcoming of using a fibre-optic probe
is that it increases spectral noise; as a result, most
reported applications involve qualitative analysis,
particularly for the identification of raw materials
[7].

However, comparative studies between quanti-
tative analyses were recently carried out by using
the conventional cuvette module and a fibre-optic
module; the results were quite comparable [8],
provided spectral data at wavelengths above 2200
nm—where fibre optics exhibits the highest spec-
tral noise—were discarded.

Ferrous lactate is used by the pharmaceutical
industry as a source of therapeutic iron. The

crystalline form most commonly used for this
purpose is the dihydrate, which contains 13.3% of
crystallization water.

In this work, a NIRRS method based on the
use of a fibre-optic probe for the determination of
the water content in ferrous lactate dihydrate is
proposed. Data are processed by using two differ-
ent multivariate calibration techniques, viz. step-
wise multiple linear regression (SMLR) and
partial least-squares regression (PLSR). Because
both are widely documented [9,10], only some
general notions are given here.

Stepwise multiple linear regression performs a
least-squares fitting of the reciprocal of the Lam-
bert–Beer law. The concentration is modelled as a
linear combination of the absorbance measured at
different wavelengths in order to obtain the
highest possible correlation for the following
equation, with the smallest possible number of
wavelengths:

C=k0+k1A1+k2A2+ ···+e (3)

Partial least-squares regression is a variable-re-
duction method that compresses the information
obtained throughout the spectrum into new vari-
ables called ‘PLS-components’ (PCs) that are sub-
sequently used for calibration. The method
simultaneously breaks down the absorbance and
concentration matrices in such a way that the first
PCs contain the greatest amount of information
for predicting the sample values.

The value of each PC for each sample is called
its ‘score’ and the regression coefficient for each
variable at each factor its ‘loading’. These terms
are related by the following equations:

X=FXLX+EX (4)

Y=FYLY+EY (5)

where Y denotes the concentration data matrix; X
the absorbance data matrix; FX and FY the scores
matrices; LX and LY the loadings matrices; and EX

and EY the residuals matrices. The scores matrices
are related by the following equation:

FY=FXV+EC (6)

where V is the internal relation and EC the resid-
ual matrix. The concentration of an unknown
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sample, y0, is calculated from its spectrum, x0, by
using the following expression:

y0=x0(FT
YX)TVLY (7)

After the quantitation conditions for the two
methods are optimized, new samples can be deter-
mined directly in an almost instantaneous man-
ner.

2. Experimental

2.1. Reagents

Karl Fischer methanol and formamide were
obtained in RE and PRS grade, respectively, from
Panreac; Karl Fischer reagent and Hidranal®-
Composite 5 were purchased from Riedel de
Haën; and ferrous lactate dihydrate
(C6H10O6Fe ·2H2O) was supplied by Laboratorios
Menarini.

2.2. Apparatus

The experimental set-up used consisted of an
NIR-Systems 6500 near infrared spectrometer
equipped with a reflectance detector and an
AP6641 ANO4P fibre-optic module for qualita-
tive and quantitative analyses. The instrument
was operated via the bundled software (NSAS v.
3.20).

Karl Fischer titrations (KF) were carried out
with a Metrohm 716 DMS Titrino autotitrator
fitted to a 303 Ti Stand titration cell, also from
Metrohm.

Spectral samples were processed by using the
spectrophotometer’s bundled software (NSAS),
which includes the SMLR algorithm. The PLSR
procedure was optimized with the aid of Un-
scrambler v. 503, from Camo (Trondheim, Nor-
way).

2.3. Sample preparation

The stoichiometric content of water in ferrous
lactate dihydrate is 13.3%. In order to ensure an
adequate calibration range, samples with water
contents over the range 11.4–14.6% were pre-

pared. Water contents exceeding that of the dihy-
drate were obtained by allowing ferrous lactate to
stand in a moist environment for a few hours; on
the other hand, water contents below that of the
lactate were prepared by placing the product in a
circular oven at 100°C under a nitrogen stream.

2.4. Determination of the water content by using
the Karl Fischer method

The Karl Fischer method for the determination
of the water content was implemented as follows:
40 ml of 75:25 (v/v) methanol/formamide mixture
was placed in a cell and titrated with Karl Fischer
reagent as far as the end-point indicated by polar-
ized electrodes. An accurately weighed amount of
about 0.1 g of ferrous lactate was then added to
the cell and its contents titrated to a new end-
point. Triplicate titrations for each sample were
performed.

In order to check that iron did not interfere
with the titration, one of the samples was ana-
lyzed thermogravimetrically in triplicate. The re-
sults obtained for that sample were 13.6190.02
mg by the Karl Fischer method and 13.6990.17
mg by the thermogravimetric method. The poorer
precision of the latter can be ascribed to sample
heterogeneity and the small amount used (about
20 mg).

2.5. NIRRS procedure

The spectrum of each sample was recorded in
triplicate from 1100 to 2200 nm, the sample being
turned over with a spatula between recordings.
Spectra were averaged and subsequently used to
obtain their first and second derivatives. Samples
were measured in the vessel, simply by immersing
the fibre-optic probe and squeezing it slightly
against the sample. Fig. 1 shows the absorbance
spectrum for one of the samples.

The results obtained in the quantitation of the
samples were expressed as the relative standard
error or prediction:

RSEP%=
'Sn

i=1 (CKFi
−CNIRi

)2

Sn
i=1 C2

KFi

×100 (8)



M. Blanco et al. / J. Pharm. Biomed. Anal. 16 (1997) 255–262258

Fig. 1. NIRS spectrum of ferrous lactate dihydrate. Ab-
sorbance (log 1/R) and second derivative spectral modes.

used in the calibration set and for those of the test
set used to check the true predictive capacity of
the model, respectively.

3. Results and discussion

The 22 samples available were split into two
groups: 10 encompassing roughly uniformly the
concentration range studied were used to con-
struct the calibration set and the other 12 were
employed as test set.

Table 1 gives the water contents of the samples
as determined by the Karl Fischer method, as well
as the standard deviations for the three determi-
nations performed. The superscripts denote the
samples that were used for calibration in the two
methods (SMLR and PLSR).

The physical dependence of reflectance mea-
surements results in spectral variability that
should be minimized in order to ensure precise
determinations of chemical components. Deriva-
tive spectra are known to decrease scattering ef-
fects and hence to increase the precision of
quantitative analyses [11]. In this work, we used
the absorbance and the first- and second-deriva-
tive spectral modes for comparison.

where n is the number of samples, and CKFi
and

CNIRi
are the water contents as determined by KF

titration and the NIR method, respectively.
RSEPC% and RSEPT% are used to refer to the
relative standard error of prediction for samples

Table 1
Percentage of water in the samples assayed (determined by Karl Fischer titration)

Dried samples Untreated samples Moistened samples

B1a 11.1490.05 C1 13.2290.15 H1 14.1190.17
H2a 14.1590.03B2 C2a11.2490.04 13.3690.01
H3 14.2890.14B3 C311.2790.08 13.4690.09

14.5890.04H4a13.8690.05B4a C4a11.3790.04
B5 11.9890.39

12.0690.06B6
B7a 12.0690.10

12.8590.27B8a

B9 12.9790.05
12.9790.06B10

B11a 13.0590.17
13.1690.02B12
13.1990.05B13a

B14 13.3690.05

The confidence interval was calculated as the standard deviation for the three determinations performed.
a Indicates samples in the calibration set.



M. Blanco et al. / J. Pharm. Biomed. Anal. 16 (1997) 255–262 259

3.1. Determination by stepwise multiple linear
regression

Appropriate selection of the measuring wave-
lengths is essential for calibration by SMLR. In
this work, we used the ascending stepwise variant.
This procedure involves using an initial wave-
length resulting in the highest correlation between
the absorbance and concentration to construct the
calibration equation (Eq. (1) from a single term)
and successively adding new wavelengths (terms
of the calibration equation). The procedure can be
adjusted by using wavelengths within preset
ranges. Some authors [12] recommend using a
wavelength in a region where the target analyte
absorbs as the first measuring wavelength in order
to ensure that the information obtained is due to
the analyte rather than a product with which
concentration it is correlated.

We compared the results obtained from wave-
lengths chosen according to three different crite-
ria, namely:

(A) Automatic selection of wavelengths
throughout the spectrum (1100–2200 nm);
(B) Selection of the first wavelength between
1350 and 1500 nm (around the water band at
1450 nm) and of the rest from any other region
in the spectrum;
(C) Selection of the first wavelength between
1900 and 2000 nm (around the water band at
1950 nm) and of the rest from any other spec-
tral region.
The number of wavelengths to be used has to

be optimized in order to avoid overfitting. This
has been done in this work by applying an F
statistical criterion to the summation of the
squares of the residues (SRC=S e i

2) for the mod-
els to be compared. If a model involving n vari-
ables,

ci=k0+k1A1+ ···+kg−1Ag−1+kgAg+ ···

+kn−1An−1+ei (9)

is compared with that constructed from g vari-
ables,

ci=k0+k1A1+ ···+kg−1Ag−1+ei (10)

then the significance of the parameter set
kg, …, kn−1 must be proved.

The summation of the squares of the residuals
for the reduced model (SRCr) and complete
model (SRCc) can be calculated. The difference
between the summation of the squares (SRCexp)
arises from the presence of n−g variables in the
complete model.

F is calculated from

F=

SRCexp

n−g
SRCr

m−n

(11)

where m is the number of samples used for cali-
bration.If FcalcBFtab, then some of the parame-
ters in the series kg, …, kn−1, will be significantly
non-zero.

Also, the goodness of fit can be estimated from
the multiple correlation coefficient:

R=
'Sn

i=1 (CNIRi
−C( KF)2

Sn
i=1 (CKFi

−C( KF)2 (12)

where C( KF is the mean water content for the
calibration sample as obtained with the Karl Fis-
cher method. For this value to be comparable
between the different models used, it must be
corrected for the number of degrees of freedom,
R2

aj :

R2
aj=1−

�m−1
m−n

�
(1−R2) (13)

where n is the number of terms in the equation
and m is as in Eq. (11).

While R2 increases with increasing number of
terms and approaches unity, R2

aj tends to level off
once the optimum model is reached.

The figures of merit of the different calibration
models (R2

aj, RSEPC, and wavelengths used) are
shown in Table 2. Results obtained from the first
derivative were significantly worse, so they have
been excluded from the table. As can be seen,
criteria A and B produced very similar results,
while C was slightly worse. The predictive capa-
bility of the best models (chosen in base of the
greatest R2

aj and the smallest RSEPC% values),
both in absorbance and second derivative, was
checked by predicting the test samples. The
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Table 2
Relative standard error of prediction (%) found for samples of the calibration (RSEPC) and test set (RSEPT) by using SMLR

Raj
2 RSEPC (%) RSEPT (%) Wavelengths (nm)Mode

2058, 11680.70.995Absorbance A
1.4 1500, 1386, 1840B 0.995 0.5

2000, 11500.988 0.8C

1.3 2168, 1218, 1476Derivative 2 A 0.997 0.3
1400, 1268, 2198B 0.995 0.5

0.6C 0.991 1946, 1398, 1996

RSEPT (%) values found are also shown in Table
2 and were, as expected, very similar, the one
obtained using second derivative spectra being
slightly better.

3.2. Determination by partial least-squares
regression

Partial least-squares regression enables the use
of the whole spectral wavelength range while min-
imizing the problems arising from the high corre-
lation between variables and measurement noise.
However, with few samples, it may be advisable
to reduce the number of variables by discarding
those which contribute no information on the
analyte. In this work, we assayed two different
wavelength regions, namely the whole spectrum
(1100–2200 nm) and the regions encompassing
the two main absorption bands for water (1350–
1550 and 1850–2000 nm). Both autoscaled data
(variables centred and scaled to a unity variance)
and unscaled data were used.

Models were constructed by cross-validation
[13]. The number of significant PCs was taken to
be the smallest for which the MSECV differed
significantly from the minimum MSECV [14]:

MSECVh=
Sn

i=1 (CKFi
−CNIRi

)2
h

n
(14)

where (CKFi
−CNIRi

) is the difference between the
concentrations obtained by the Karl Fischer
method and by NIR for n samples, using h princi-
pal components to predict the PLS model.

Fig. 2 shows the variation of Mean Squared
Error of prediction by Cross-Validation
(MSECV) with the number of PCs for the models

tested. As can be seen, MSECV values were
markedly smaller for absorbance data, which
should therefore have a higher predictive power
than first- and second-derivative data.

Table 3 gives the RSEPC (%) and RSEPT (%)
values found for the different models assayed. The
number of PCs used is given as a superscript in
brackets in each case.

As expected, the RSEPC values obtained from
absorbance data were the smallest. However the
RSEPT (%) values were quite similar for the three
spectral modes, ranging from 1.2 to 1.7%. When
only the spectra corresponding to the water bands
were used, the prediction errors were slightly
smaller than those obtained from the whole spec-
trum; however, scaling the data made no differ-
ence.

Based on calibration errors, the model provid-
ing the best results was that constructed from the
following parameters: spectral absorbance mode,
wavelength range 1350–1550 and 1850–2000 nm,
three PCs and unscaled spectra.

The SMLR and PLSR results were compared
by obtaining the regression lines for the results
provided by the best model in each case against
the reference method, with both the calibration
and the prediction samples. Table 4 shows the
figures of merit for the lines. Note that the results
obtained with both procedures were virtually
identical and that the predictive capacity was
quite good in both cases.

4. Conclusions

Use of the NIRRS technique in conjunction
with a fibre-optic probe and a suitable calibration
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Fig. 2. Error of prediction in cross-validation for each PLS component in the different models and spectral modes tested.
Wavelength ranges: (�) 1100–2200 nm in absorbance and 1150–2200 nm in first and second derivative; (�) 1350–1550 and
1850–2000 nm. (a) Unscaled data; (b) autoscaled data.

procedure enables non-destructive analysis of
samples with good results as regards the determi-
nation of water in ferrous lactate. The method
involves no sample pretreatment, so the analysis

time is substantially reduced, which is of practical
significance for control analyses.

The calibration procedures tested, SMLR and
PLSR, provide very similar results. Under the
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Table 3
Relative standard error of prediction (%) for samples of the calibration (RSEPC) and test (RSEPT) obtained by the different PLSR
models assayed

Range (nm) Autoscaled Not scaled

RSEPC (%) RSEPT (%) RSEPC (%) RSEPT (%)

Absorbance
0.7 (2) 1.5 0.9 (2) 1.61100–2200

1350–1550
1.40.5 (3)1850–2000 0.5 (3) 1.4

Derivative 1
1.7 (2) 1.3 2.0 (2) 1.31150–2200

1350–1550
1.9 (2) 1.31850–2000 0.8 (1) 1.3

Derivative 2
1.7 1.6 (2) 1.02.8 (1)1150–2200

1350–1550
1.30.7 (2)1850–2000 2.0 (3) 1.2

Superscripts in parentheses indicate the number of PLS components used in each model.

working conditions employed, which were aimed
at developing a quality control procedure for raw
materials, use of PLSR is recommended on ac-
count of its advantages for the detection of sam-
ples other than those in the calibration set. This
increases the reliability of analyses [15,16].
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